

Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College, Panchavati, Nashik-422003 (Affiliated to SPPU, Pune, Reaccredited with 'A' grade, Recipient of Best College Award by SPPU)

Programme Specific Outcomes,

&

Course Outcomes of B.Sc

Department of Chemistry

Academic Year

2021-22

Programme Specific Outcomes: B.Sc. Chemistry (USC)

	Name of the Department: Chemistry		
	Program Specific Outcomes		
	At the end of the programme, student will be able to		
1	learn the basic terms, theories, principles of chemistry and of its different sub-subjects.		
2	identify and analyse problems and issues with well-defined solutions.		
3	get the hands-on training of the chemistry related equipment's.		
4	use modern techniques, software's and web resources		
	create an awareness about the impact of chemistry on the environment, in and ouside the		
5	scientific society.		
6	know the safety rules of chemistry required for working in and outside the laboratory		

	Semester-I			
Paper	Course code and course title	At the end of the course, student will be able to		
Ι	USC(CH-101) Physical Chemistry	Remember laws of thermodynamics and chemical and ionic equilibria Understand terms involved in thermodynamics, chemical and ionic and equilibria Develop various equations of thermodynamics and chemical and ionic equilibria Apply the formulae to solve the numerical based on thermodynamics, chemical and ionic and equilibria Give applications of laws and their limitations. Access various chemical and physical processes in terms of concepts of thermodynamics and chemical and ionic equilibria		
II	USC(CH-102) Organic Chemistry	 Define Physical Effects, Electronic Displacements: Inductive Effect, Electrometric Effect, Resonance and Hyperconjugation. Understand the fundamentals, principles, and recent developments in the subject area. Interpret R/S, E\Z Configurations of organic compounds. Explain Interconversion of Wedge Formula, Newman, Sawhorse and Fischer representations. Conformations concerning ethane, butane and cyclohexane. Develop a method for the preparation of alkane, alkene, and alkyne. Create the foundation for research and development in Chemistry. 		
III	USC(CH-103) Chemistry Practical Course I	Define pH, enthalpy of ionization, heat capacity.Discuss thermochemical parameters and related concepts.Calculate Rf values.Organic qualitative analysis.Discriminate safety symbol.Make buffer solutions.		
		Semester-II Define various types of chemical bonds- Ionic, covalent, coordinate and metallic bond Discuss Block, group, modern periodic law and periodicity, stability of half-filled and filled orbitals.		

Course Outcomes: F.Y.B.Sc. Chemistry (USC)

IV	USC(CH-201):	understanding of Atomic Structure, geometry and effect of lone pairs
	Inorganic	with examples such as ClF ₃ , Cl ₂ O, BrF ₅ .
	Chemistry	Design a Skeleton of the long form of the periodic table.
		Interpret the concept of different types of valence shell electron pairs
		and their contribution to bonding
		Application of non-bonded lone pairs in the shape of the molecule
		Remember various terms involved in analytical chemistry
		Understand separation, purification and identification techniques of
	USC(CH- 202):	analytical chemistry.
v	Analytical	Apply various formulae to solve analytical problems.
	Chemistry	Discuss basics of chromatography and types of chromatography.
		Explain instrumentations of pH-metry.
		Know and explain the applications of chromatography and pH-metry
		Define crystallization, distillation.
	USC(CH-203)	Estimate Cu(II) from brass alloy by iodometrically.
VI	Practical	Sketch of polar plots of S and P Orbital.
V I	Chemistry	Analysis of commercial products.
	Course II	Discriminate between oxime derivative and DNP derivative.
		Make Inorganic pigment cuprous oxide (Cu2O).

	Semester-III		
Paper	Course code and course title	At the end of the course, student will be able to	
Ι	USC(CH-301) Physical ad analytical chemistry	 Define the terms related to Chemical kinetics, surface chemistry, errors in quantitative analysis and volumetric analysis. Explain the concepts of Chemical kinetics, surface phenomenon, errors, organic and inorganic qualitative analysis. Solve the numerical problems based on the subject physical and analytical chemistry. Differentiate the chemical reactions, errors in analysis, qualitative and 	
		quantitative analysis.evaluate the rate equation, Nernst distribution law, Lambert's BeersLaw and different analysis methods.Justify the chemical reaction, terms of surface chemistry, error in analysis, the qualitative and quantitative methods of analysis.	
Π	USC(CH-302) Inorganic and Organic chemistry	 Define terms related to MOT, coordination compound, Hydrocarbons. Explain the terms LCAO principle, types of MO's. Recognize functional groups and their reactions, addition reaction, nucleophilic substitution, elimination reaction. Apply reaction mechanism to predict the products of the reaction in SN1, SN2, E1, E2, rearrangement reaction. Apply rules of absolute configuration and will predict the configuration at chiral C atom. Decide whether the reaction SN1, SN2, E1, E2 Reaction. Plan for the synthesis of Alcohol, Ether, and Phenols. 	
III	USC(CH-303) Practical chemistry	Determine the rate of reaction experimentallyAnalysis of organic and inorganic compound qualitativelyStudents able to make solutions of different concentrationsSynthesis of organic and Co-ordination compoundsUses of pH metry, Conductometry, Colorimetry.Demonstrate Volumetric analysis, ideal and real solutions, adsorptionand organic estimation	

Course Outcomes: S.Y.B.Sc. Chemistry (USC)

	Define terms such as Phase equilibrium, Ideal solution. Real solution,
	conductometry colorimetry and column chromatography.
USC(CH-401)	Explain the terms such as phases, components, solution, conductance,
Physical and	resistance, transmittance, absorbance and different chromatography
Analytical	methods.
Chemistry	Predict the Gibbs phase rule, Raoult's law, Henry's Law Ohm's law,
	Kohlrausch's law, Lambert's law and Beer's law.
	Calculate the numerical problems based on theory/equations.
	Justify the different laws of phases, solution, conductometry
	colourimetry and different chromatography methods.
	Compile the all the principles, laws and other information according to
	their understanding.
	Draw the structure and stability of different conformations of
	Cyclohexane and substituted cyclohexane
	Discuss the preparation, physical and chemical properties of amines,
USC(CH-402)	carboxylic acid, Aldehyde and ketones.
	Apply Valence bond theory, crystal field theory and molecular orbital
-	theory to different types of complexes.
-	Explain Isomerism in coordination complexes.
	Calculate field stabilization energy and magnetic moment for various
	complexes.
	Plan for interconversion of different functional groups.
	Determine cell constant, dissociation constant and perform
	conductometric titrations
	Perform column chromatography for separation of binary mixture of
	cations
USC(CH-403)	Determine percent concentration for the phenol water system and study
Practical	the effect of added electrolyte on the critical solution temperature of
Chemistry	phenol-water system.
	Verify the Freundlich and Langmuir adsorption isotherm for
	adsorption of acetic acid on activated charcoal
	L
	Physical and Analytical Chemistry USC(CH-402) Inorganic and Organic chemistry

	Apply Beer's law and calculate absorbance of unknown concentration
	solution.

Semester-V			
Paper	Course code & course title	At the end of the course, student will be able to	
Ι	USC(CH-501) Physical Chemistry-I	Understand and explain the differences between classical and quantum mechanicsDiscuss various laws and theories of quantum chemistry and solve the problems.Know and explain the theory and applications of microwave, IR and Raman spectroscopy.Draw rotational, IR and Raman spectra.Explain various concepts and laws of photochemical reactions.Apply photochemical concepts to solve the problems.	
Ш	USC(CH-502) Analytical Chemistry I-	Define basic term in gravimetry, spectrophotometry, qualitative analysis, parameters in instrumental analysis, UV-Visible spectroscopy.Identify important parameters in analytical process.Explain different principles involved in the gravimetry, spectrophotometry, parameters in instrument analysis, qualitative analysis.Describe procedure for different types of analysis included in the syllabus.Demonstrate theoretical principles with the help of practical Compare the different analytical term, process and analytical 	
III	USC(CH-503) Physical Chemistry Practical I	Prepare the solutions of various concentrations and interconvert the them.Explain the principles involved in Refractometry, Spectrophotometry and Colorimetry, Conductometry, Viscosity and PhotoflurometryConstruct the experimental set up.Demonstrate the experiments.	

Course Outcomes: T.Y.B.Sc. Chemistry (USC)

		Analyse the observations
		Calculate and discuss the obtained results.
		Define Nephelauxetic Effect, Trans Effect, Boiling Point and
		Melting Point.
		Explain Electroneutrality Principle and Different Type of Pi
		Bonding, MOT of Octahedral Complexes with Sigma Bonding,
	USC(CH-504)	Electronic Configuration Of Lanthanide And Actinide.
	Inorganic	Classify Metallic Bond on The Basis Of Band Theory, Insulator On
	Chemistry I	The Basis Of Band Theory, Separation Of Lanthanides By Modern
		Method.
IV		Difference Between Metal, Semiconductor and Insulator, Na, Mg,
		AL In Term of Valence Electron &conductivity, lanthanides and
		actinides.
		Evaluate the Trends in Periodic Properties of These Elements
		Lanthanide Contraction, Electrical Conductivity Of Metals With
		Respect To Valence Electrons
		Design Inorganic Reaction Mechanisms Available in The Literature
		to Solve
		Chemical Problems, N(E) AND N(E) Curve,
		know the importance and requirements of the chemical, sugar,
		fermentation, soap, detergents, dyes, and pigment industry.
		describe the industries according to their raw material, application
	USC(CH-505)	and products.
	Industrial	apply the knowledge of industrial chemistry for the real-life
V	Chemistry	situations.
		categorize the industries according to their working principle,
		processes, products and applications.
		assess the industries according to their products, its applications
		and safety measures.
		develop the flowsheet or plan of industrial processes.
	USC(CH-506)	List of quantitative and qualitative analysis.
VI	Inorganic	Understand the purpose of collecting, interpreting, analysing, and
	Chemistry	reporting (in written form) chemical data.

	Practical-I	Explain Mole concept and its application in the preparation of
		normal and molar solutions, and use of mole concept in quantitative
		calculations for inorganic analysis
		Decide methods and instruments that can be used qualitative and
		quantitative analysis.
		Create proper quantitative methods for analysis of samples
		containing inorganic substances
		Perform all the activities in the laboratory with neatness and
		cleanness
		Identify types of reactions; electrophilic and nucleophilic
		substitution, rearrangement and elimination reactions.
		Write reaction mechanism involved electrophilic and nucleophilic
		substitution, rearrangement and elimination reactions.
		Discuss the synthetic applications of active methylene compounds,
1 /11	USC(CH-507)	rearrangement and elimination reactions.
VII	Organic	Explain factors affecting the reactivity of compounds in active
	Chemistry –I	methylene compound reactions, rearrangement and elimination
		reactions.
		Write the structures of reactants and products of reactants.
		Solve the problems based on active methylene compounds,
		rearrangement and elimination reactions.
		Give introduction to molecular logic of life.
	USC(CH-508) Chemistry Of biomolecule	Define Carbohydrates, Lipids, Amino acids, Proteins, Enzymes and
		Hormones
		Classify Carbohydrates, Lipids, Amino acids, Proteins, Enzymes
VIII		and Hormones
V 111		Discuss the properties of Carbohydrates, Lipids, Amino acids,
		Proteins, Enzymes and Hormones
		Describe the importance of biomolecules
		Explain reactions of Carbohydrates, Lipids, Amino acids, Proteins,
		Enzymes and Hormones
	USC(CH-509)	Develop skills required in chemistry such as the appropriate
IX		

	Chemistry	Design the experimental set up and perform organic qualitative
	Practical-I	analysis, organic preparations and green chemistry experiments.
		Write the reaction mechanisms.
		Separate, purify and confirm the formation of the compounds.
		Describe the various techniques of synthesis and analysis of
		organic compounds.
		Analyse and interpret the experimental results.
		Define monomer, polymer, polymerisation, degree of
		polymerisation, functionality
		Understand Various ways of nomenclature.
		Relate Different schemes of classification of polymers, polymer
		nomenclature, molecular forces and chemical bonding in polymers,
	USC(CH-	glass transition temperature of polymer.
Х	510B) Polymer	Difference between simple compounds and polymer.
	Chemistry	Judge Mechanisms of polymerization.
		Rewrite application of the following polymers: polyethylene,
		polystyrene, polyvinyl chloride, polyvinyl alcohol, polymethyl
		methacrylate, polytetrafluoroethylene, polyamides, polyesters,
		phenol formaldehyde resins (Bakelite, Novolac), silicone polymers,
		polyisoprene, conducting Polymers.
		Describe the term involved in environmental chemistry,
		hydrosphere and water pollution, analytical technique in water
		analysis and water pollution and treatment methods.
		Explain hydrological cycle, Segment of environment, biochemical
	USC(CH-	cycles, different analytical technique in water analysis, water
	511A)	pollutant, eutrophication, waste water treatment.
XI	Environmental	Compare water quality parameters, different technique in water
	Chemistry	analysis and waste water treatment methods.
		Classify water pollutant, environment pollution, waste treatment
		methods
		Write different techniques in water analysis and waste water
		treatment method.

		Draw hydrological cycle, different waste treatment process,			
		biochemical cycle.			
	Semester-VI				
		Recall the various terms related to electrochemistry,			
		crystallography, and nuclear chemistry.			
		Demonstrate electrochemical cell, reference electrode, EMF,			
		Isotropy, anisotropy, unit cell and radioactivity.			
		Classify reversible and irreversible cells, Primary and secondary			
Ι	USC(CH-601)	Reference Electrodes, radioactive nuclides.			
1	Physical Chemistry II	Draw electrochemical cells, primary and secondary reference			
	Chemistry II	electrodes, crystal structure.			
		Evaluate the electrochemical cells, titrations methods, Batteries,			
		crystal structures and nuclear reactions.			
		Prepare list of electrochemical cells, Batteries, crystalline and			
		amorphous substances, radioactive reactions.			
		Remember the general terms of colligative properties, Kinetics,			
	USC(CH-602) Physical Chemistry III	electronic structure and polymers.			
		Explain the various techniques used to explain colligative properties.			
П		Understand and apply kinetic laws of solid-state reactions.			
11		Analyse the band structures conductors, semiconductors and			
		insulators.			
		Classify the types of polymers			
		Determine the molecular weights of polymers.			
		Prepare the solutions of various concentrations and interconvert the			
		them.			
	USC(CH-603)	Explain the principles involved in potentiometry, pH metry and			
III	Physical	Radioactivity, Colligative properties, and Turbidometry			
	Chemistry	Construct the experimental set up.			
	Practical-II	Demonstrate the experiments.			
		Analyse the observations.			
		Calculate and discuss the obtained results.			

		Define Organometallic Chemistry, Homogeneous and
		Heterogeneous Catalysis, Bioinorganic Chemistry, Inorganic
		Polymer.
		Understand The M-C Bond, Multiple Bond Due to Co Ligand,
		Phenomenon Of Catalysis, Its Basic Principle And Terminologies,
		Essential The Role Of Metals In Non Enzymatic Processes,
		Technological Importance Of Ionic Solids. Catalytic Reactions for
		Wilkinson's Catalysis, Hydroformylation Reaction.
		Draw the Structure of Vit.B12 And Give Its Metabolism, Catalytic
	USC(CH-604)	Cycle, Silicones, Siloxanes, Borazines, Phosphazenes
	Inorganic	Explain catalytical Activities of Binary Metal, Accounts of
IV	Chemistry-II	Homogeneous and Heterogeneous Catalysis, Function of
		Haemoglobin and Myoglobin in O2 transport And Storage, Types of
		Inorganic Polymer, Inorganic Liquid Crystal.
		Evaluate the Uses of Organometallic Compounds in The
		Homogeneous Catalysis, Use of Catalysis in Industries Area,
		Biological Role of Inorganic Ions and Compounds, Uses of
		Inorganic Polymer, Technological Importance of Ionic Liquids.
		Design the Chemistry of Ferrocene, of Olefins, Zeolites In Catalysis
		Biodiesel Synthesis, Automotive Exhaust Catalysis., Structure And
		Bonding Using Valance Electron Count, Metalloprotein Of Iron,
		Synthesis Structural Aspects Of Inorganic Polymer, Ionic Liquid,
		Their Preparation and Their Significant W.R.T. Green Chemistry.
		Define Acid and Bases, Crystalline Amorphous Solid, Ionic Radius,
		Lattice Energy, Zeolites, Nano chemistry, Chemical Toxicology.
		Explain Theories of Acids, Nature of Solids, Defects in Solids,
	USC(CH-605)	Zeolite Synthesis and Their Structure, Various Method of
V	Inorganic	Nanoparticle Synthesis, Impact of Toxic Chemical on Enzyme
	Chemistry-III	Illustrate the Strength of Various Types of Acids, Crystal Structure
		of Solids, Haber Cycle, Zeolite Framework Type and Their
		Classification, Properties and Application of Nanoparticle, Impact of
		Toxic Chemical in The Enzyme.

	1	Compare Agid Dage Strengths in Nen Agreeue Selvente Freehel
		Compare Acid Base Strengths in Non-Aqueous Solvents, Frenkel
		And Schottky Defect, Natural and Artificial Zeolites, Biological
		Effect of As, Cd, Pb, Hg
		Evaluate the Different Properties If Acid and Bases, Types of Voids,
		Application of Zeolites, Application of Nano chemistry, Biological
		Methylation.
		Write the Hard and Soft Acid and Base Concept with Example,
		Coordination Number of Ions in Ionic Solids, Stabilization of
		Nanoparticle in Solution
		Define the Following Term Column Chromatography, Nano
		catalyst,
		Understand the Solvent Free Microwave Assisted One Pot Synthesis
	USC(CH-606)	Apply Column Chromatography for Purification Of Water Using
	Inorganic	Cation/Anion Exchange Resin.
VI	Chemistry	Analyse Different Ion by Using Volumetric Method, Or Flame
	Practical-II	Photometry.
		Create Proper Quantitative Methods for Analysis of Samples
		Containing Inorganic Substances
		Perform All the Activities in The Laboratory with Neatness and
		Cleanness
		Define spectroscopy
		Interpret the UV, IR and PMR spectra.
		Describe the principles of UV, IR and PMR spectroscopy.
	USC(CH-607)	Solve the problems based on UV, IR and PMR spectroscopy.
VII	Organic	Determine the structure of simple organic compounds on the basis
	Chemistry-II	of spectral data such as λ max values, IR frequencies, chemical
		shift
		Explain the geometrical isomerism, stability, energy calculations
		and optical activity of in disubstituted cyclohexane's and decalins.
VIII		Understand the concepts involved in retrosynthetic analysis,
	USC(CH-608)	reagents, Wolff rearrangement, Hofmann rearrangement, Simmons-
	Organic	Smith reaction, Michael reaction, Wittig reaction, McMurry
	Chemistry-III	reaction, Diels-Alder reaction, etc, natural products.

		Write reaction mechanism.
		Apply concepts of organic synthesis.
		Identify the structures of reactants and products.
		Explain classifications, isolations and structural determination of
		terpenoids and alkaloids.
		Discuss the synthesis of citral and ephedrine.
	USC(CH-609)	Interpret IR and NMR spectra
IX	Organic	Achieve the practical skills required to perform the estimation,
	Chemistry	organic extractions, and column chromatography.
	Practical-II	Describe the principles involved in estimation, organic extractions,
		and column chromatography.
		Apply the principles of estimation, organic extractions, and column
		chromatography.
		Design the experimental set up to perform the experiments of
		organic estimation, organic extractions and purification using
		column chromatography.
		Analyse and explain the experimental results
_	USC(CH- 610A) Introduction of Forensic Chemistry	Define the term in history of development of forensic science in
		India, introduction of narcotics drugs and psychotropic substances.
		Explain the methods of identifying of narcotics, drugs and
V		psychotropic substance.
Х		Classify narcotics and psychotropics drugs.
		Analysis of narcotics drugs and psychotropic substances
		Fundamental principles and functions of forensic science.
		Testing of narcotics drugs and psychotropic substances.
_	USC(CH- 611B) Analytical Chemistry –II	Discuss Techniques of solvent extraction, Types of
		chromatography.
		Explain different principles involved in the analyses using solvent
XI		extraction, basics of instrumental chromatography, HPLC, GC, and
		atomic spectroscopic techniques.
		Apply different Technique for purification of organic and inorganic
		compounds

Differentiate among the different analytical terms, process and analytical methods.
Use of AAS and FES as an analytical tool.
Solve the numerical problems.